X. Legendrian Knots
A. Preliminary Results
lemma 1
let M be a 3-manifold on which the space of contact structures isotopic to o fixed contact structure? is simple connected (if M has boundary only consider structures fixed at ∂M)
The classifying Legendion knots in $\left(m_{1} 3\right)$ upto isotopy is equivalent to classifying them upto contactomorphism (smoothly isotopic to the identity)

Proof:
exercise: two Legendrion knots are isotopic ifs there is a contact isotopy of $(M, 3)$ taking one to the other
Hint: use smooth isotopy extension and the Maser method used in proof of Gray's Theorem, Th "II. 6
Clearly if to Legendicion knots are isotopic then they are contactomorpic by the endpoint of the ambient contact isotopy
now suppose $\phi: M \rightarrow M$ is a contactomorphism that takes one Legendrion L to the other L^{\prime} and ϕ is isotopic to the identity so $\exists \phi_{t}: M \rightarrow M$ with $\phi_{0}=c d, \phi_{1}=\phi$
note: $\left.l_{t}=\left(\phi_{t}\right)_{*}\right\}$ is a loop of contact structures based at 3
so by hypothesis there is a map

$$
H:\{0,1] \times\{0,1] \rightarrow\left\{\begin{array}{l}
\text { space of contact stress } \\
\text { is topic to }\}
\end{array}\right.
$$

s.f. $H(t, 0)=?_{t}, H(t, 1)=H(0, s)=H(1, s)=3$

apply Grey's $T^{\underline{m}}$ to $H(t, s)$ for $t \in[0,1]$ and s fixed notice as s varies the diffeomorphisms constructed vary smoothly
\therefore we get a map

$$
F:[0,1] \times[0,1] \rightarrow \operatorname{Diffeg}(M)
$$

st.

$$
F(0, S)(x)=x
$$

$F(t, 1)(x)=x$ (since $H(t, 1)=\{$ for all t)
$F(1, s)$ are all contactomorphisms of $\}$
exencise: you can choose α_{t} for $\}_{t}$ so that

$$
F(t, 0)=\phi_{t}
$$

$\therefore F(1, s)$ is a contact isotopy from $i d=F(1,1)$ to $\phi_{1}=(1,0)$

Fact (Eliashbeng):
the space of contact structures isotopic to
$\xi_{\text {ged }}$ on S^{3} or B^{3} is simply conneded
(Voge1):
same is true for $S^{\prime} \times D^{2}$ with convex boundary having 2 dividing curves of slope n

Corollary 2:
the classification of Legendian knots in

$$
\left.\left(S^{3},\right\}_{s t d}\right),\left(B^{3}, I_{s t d d}\right),\left(S^{1} \times D_{1}^{2}, I_{s t d d}\right)
$$

upto contactomorphism and upto isotopy is the same (for latten 2 manifolds every thing is upto isotopy)
recall: any Legendrian knot L has a standord neighborhood N with convex boundary having 2 dividing curves of slope tb (L)
exercise:

1) any $L^{\prime} C N$ isotopic to the core must have tho $\leq t b(L)$
2) $\left(f+b\left(L^{\prime}\right)=t b(L)\right.$ then $L '$ is Legendrion isotopic to L
hint: create a contactomorphism of N taking L to L ' then use Corollary 2
3) any 2 standard nbhds of L (with same characteristic foliation on 2) are isotopic
||exercises imply you can study Legendrion knots by || studying their standard nbhds!
note: inside N we can stabilize L let $N_{ \pm}$be a standard neighborhood of $S_{ \pm}(C)$
$\overline{N-N_{ \pm}}$is $\tau^{2} \times[0,1]$ with dividing slopes

$$
+b(L)-1 \text { and }+b(L)
$$

so if is a basic slice!
of course different basic slices correspond to different stabilizations
we can turn this arround!
given a Legendrian L with std ubhd N
suppose N is contavied in a solid torus N^{\prime} and N^{\prime} has convex boundary with two dividing curves of slope $t b(L)+1$ then N^{\prime} is a standard ubhd of a unique Legendrian L^{\prime} and L is a stabilization of L^{\prime} sign of stabilization depends on sign of the basic slice
we call L ' a destabilization of L
thus if we have a bypass for ∂N along a roving curve of slope $>t b(L)+1$, then after attaching the bypass we get a torus T^{\prime} with dividing slope $+b(L)+1$ and τ 'bounds a solid torus N^{\prime} that is a stol unbid of a destabilization of L
B. The unknot

The $3:$
If U is the unknot in a fight manifold $\left(\mu_{1}, 3\right)$ then there is a unique Legendion $L \in \mathscr{L}(v)$ with to $(L)=-1($ and,$(L)=0)$ and all other $L^{\prime} \in \mathcal{L}(U)$ are stabilization of L

SLegendrian isotopy classes of Legendrian realizations of U
note: this means the mountain range of U is

Proof:
we note the Bennequin is equality says for $L \in \mathcal{L}(U)$

$$
\psi_{b}(L)+|r(L)| \leq-1 \longleftarrow-x\left(D^{2}\right)
$$

So we only need to consider the case when $t b(L) \leq-1$ we will show

1) any $L \in \mathscr{L}(U)$ with $+b(L)<-1$, destabilizes
2) there is a unique $L \in \mathcal{L}(v)$ with $t b(c)=-1$
the theorem clearly follows
Proof of 1):
let $L \in \mathcal{L}(u)$ with $+b(L)<-1$
let N be a standard neighborhood of L
$\Gamma_{\partial N}$ is 2 curves of slope $-n$, for some $n>1$ make ruling curves on N have slope O
since U is the unknot \exists a disk D with $\partial D=$ ruling curve
note: $\tau w(\partial D, D)=-\frac{1}{2}\left(\partial D \cap \Gamma_{\partial N}\right)=-n$
so we can make D convex
Γ_{D} near $2 D$ books like

so we must see

can use Giroux flexibility to find a bypass on D for ∂N attaching bypass to ∂N gives convex torus T with dividing slope $-n+1$
T bounds N^{\prime} a solid torus, as discussed above N^{\prime} is a std nth of a Legendsian knot L^{\prime} and $L=S_{ \pm}\left(L^{\prime}\right)$ for some choice of sign

Proof of 2):
first assume $M=s^{3}$
suppose $L, L^{\prime} \in \mathcal{L}(u)$ and $+b(L)=+b\left(c^{\prime}\right)=-1$
let N, N^{\prime} be standard ubhds of $L_{1} L^{\prime}$, respectively
(can assume $\partial N_{3}=\partial N_{3}^{\prime}$)
set $C=\overline{S^{3}-N}$ and $C^{\prime}=\overline{S^{3}-N^{\prime}}$
these are both solif tori, naturally S^{0}, and both have dividing slope -1
since the dividing curves are longitudnial there is a unique tight structure on S^{0} with these boundary conditions
$\therefore \exists$ a contactomorphism $c \rightarrow c^{\prime}$
and this can clearly be extended to $N_{1} N^{\prime}$ to get a contactomorphism from $S^{3} \rightarrow S^{3}$ taking N, N^{\prime}
since $N=N^{\prime}$ contalis a unique Legendrion with $t_{0}=-1$ by the discuss ion after lorollary 2 we can assume the contactomorphism sends L to L^{\prime}
we are now done by Corollary 2
exercise: Same result holds for $\left.\left(B^{3}\right\}_{\text {std }}\right)$
Hint: Show two Legendrian knots are isotopic in s^{3} iff they are is topic in the complement of a Darboux ball
now for $L, L '$ is a general monifold M
we can use Gran flexibility to show

So L, L^{\prime} can be siotoped into ubhd of a Legendrion arc

since we can isotop these arcs to be disjoint we can assume the disks, D, D^{\prime}, that L, L^{\prime} bound are disjoint
let $B=$ hhd $D U D^{\prime} v$ arc joining D to D^{\prime}
note: B is a 3 -ball with a tight contact str. on it so L is isotopic to L^{\prime} in B and hence is M
C. Torus Knots:
let $N=$ nohd of the unknot in S^{3}
$\begin{array}{lll}\mu \subset \partial N & \text { band a disk in } \frac{N}{S^{3}-N} \\ \lambda<\partial N & \cdots & "\end{array}$

using this basis for $H_{1}(\partial N)$ we can represent any embedded curve γ by its homology class $p[\lambda]+q[\mu]$ for relatively prime p and q
an embedded curve γ on N realizing $\rho[\lambda]+q[\mu]$ is called a (p, q)-torus knot and is denoted $T_{p, q}$
say $T_{p . q}$ is a positive torus knot if $p q>0$ is a negative $"$ " $p q<0$
examples: $T_{1.0}$

is the unknot

is the trefoil

exencise: Show $T_{p, g}$ is isotopic to $T_{q, p}$ and $T_{-p_{1}-q}$
exencuse: Show Tp.g has a Seifert surface of genus $g=\frac{(p-1)(q-1)}{2}$ (same as $X=p+q-p q$)

Hint: take p copies of disk
they will intersect pg times on ∂N "resolve" the intersections

Th -4 : \qquad there is a unique Legendrian $L \in \mathcal{L}\left(T_{p, q}\right)$ with $t_{b}(L)=p q-p-q$
moreover, $r(L)=0$ and any other element in $\mathcal{L}\left(\tau_{p-q}\right)$ is a stabilization of L

Las front diagram

exencise: compute tb and r in diagram above
note: this means the mountain range of $T_{p . g}$ is

Th ${ }^{\text {M 5 5: }}$
If $\tau_{p . q}$ is a negative torus knot with $-q>p>0$, then

1) the maximal Thurston-Benneqin nut for knots in $\mathscr{L}\left(T_{p, q}\right)$ is $p q$
2) any knot in $\mathcal{L}\left(\tau_{p, q}\right)$ is a stabilization of a knot with th $=\rho 9$
3) if $-k-1<9 / p \leq-k$ then there are exactly $2 k$ knots in $\mathcal{L}\left(\tau_{\mu q}\right)$ with th= 19 and they are determined by there rotation numbers which are

$$
\left\{ \pm(q-p+n 2 q): 0 \leq n \leq \frac{2(q-p)}{p}\right\}
$$

4) $T_{p, q}$ is Legendrian simple
(ie. two knots in $\mathcal{L}\left(T_{p .9}\right)$ are Legendrion isotopic \Leftrightarrow same tb and r
if $-q=\left(n_{1}+n_{2}+1\right) p+e$ then the front diagrams for knots in $\mathcal{L}\left(\tau_{R q}\right)$ with $t_{b}=p q$ are

$$
\begin{aligned}
& B= \\
& A=\underbrace{=\sqrt{E}}_{e} \Rightarrow 5 \text { or } \underbrace{Z-. . Z E}_{e}
\end{aligned}
$$

exercise: compute to $=p q$ in examples above compute r and show they agree with Item 3) in π^{-m}
examples:

$$
\begin{gathered}
T_{2,-3} \quad \pm(3-2-2 \cdot 2 n) \quad 0 \leq n<\frac{2(3-2)}{2}=1 \\
\pm 1
\end{gathered}
$$

so mountain range is

$$
t_{6}=-6
$$

so all efts in $\mathcal{L}\left(\tau_{-3,2}\right)$ are stabilization of

more generally $T_{2,-(2 n+1)}$ has $+6=-4 n-2$ possible rotations are

$$
\begin{aligned}
& \pm(2 n-1-2 \cdot 2 \cdot n) \quad 0 \leq n<\frac{2 n-1}{2} \\
& \pm(2 n-1), \pm(2 n-5), \ldots, \pm(2 n-4 n-3) \\
& \text { eg. } n=2 \quad \pm 3, \pm(-1)
\end{aligned}
$$

So $-3,-1,1,3$
$n=3 \quad \pm 5, \pm 1, \pm(-3)$
So $-5,-3,-1,1,3,5$
exercise: show rotation numbers are

$$
-2 n+1,-2 n+3, \ldots, 2 n-3,2 n-1
$$

so mountain range is

$T_{4,-9} \quad \max * 6=-36$
rotation numbers are $\pm(9-4-8 n) \quad 0 \leq n<\frac{9-9}{2}=\frac{5}{2}$
so $\pm(5-0), \pm(5-8), \pm(5-16)$

$$
\begin{aligned}
& \pm 5, \pm(-3), \pm(-11) \\
& -11,-5,-3,3,5,11
\end{aligned}
$$

So the mountain range is

exercise: Given any n, m, show there exist negative torus knots T_{19} with mountain range haring $\geq n$ "peaks" and "valleys" of depth $\geq m$

Why are positive and negative torus knots so different?
answer: slopes of convex Heegaard tori in S^{3} ! using the coordinates on the Heegaard tor vs $\lambda_{1} \mu$ above lie. in the def" of (0,9) - torus knots)

$$
S^{3}=S_{\infty} \cup S^{0}
$$

Las we discussed when classifying contact structures on lens spaces)
we can think of S_{∞} as a standard unbid of the $t_{6}=-1$ Legendrion unknot
so $\}_{s t d} l_{s_{\infty}}$ is unique element in $\overline{\operatorname{cig}} \operatorname{lot}\left(S_{\infty} ;-1\right)$
similarly $\left.?_{\text {std }}\right|_{\text {so }}$ is unique element in $\operatorname{Tight}\left(s^{0} ;-1\right)$
note: in S_{∞} we can find convex tori with any dividing slope in $(\infty,-1]$
So "
slope in $[-1,0)$
so in S^{3} we can find convex Heegaard tori with dividing slope any negative number! also if T was a lteegard tor ns with dividing slope $n \geq 0$ then T splits S^{3} into \widetilde{S}_{∞} and \widetilde{S}° where they both have dividing slope r
thus in \tilde{S}_{∞} we can realize a convex torus with any dividing slope in $(\infty, r]$

in particular, there is one with dividing
slope 0, a Legendion dived on it bounds a meridional disk in \tilde{S}° \therefore contact structure is oventwisted so T does not exist!
we have shown
lemma 6:
thinking of S^{3} as $S_{\infty} \cup S^{\circ}$ we can find a convex Heggaard torus of slope r in $\left(S^{3}, r_{s+d}\right) \Leftrightarrow r<0$ (more oven we can assume if has 2 dividing curves)
exercise:
show if S is a solid torus in a fight contact manifold $(M, 3)$ with core an unknot, then any convex torus τ smoothly isotopic to as has divicking slope in $(-\infty, 0)$.
more oven, any slope in $(-\infty, 0)$ can be raked as the diving slope of such a torus
classify Legendrion positive torus knots
Proof of $T T^{-\frac{m}{4}}$:
we will show: 1) any element in $\mathcal{L}\left(\tau_{p, q}\right)$ destabilizes to an element with th $=p q-p-q$
2) there is a unique element is $\mathscr{L}\left(T_{\text {aq }}\right)$ with $+b=p q-p-q$ (and if has $1=0$)
clearly the The follows
we first need to compair framing of $T_{R q}$ from Seifent surface to framing coming from torus T contacting $T_{p, i}$
exercise:

$$
\text { show (torus framing) }-(\text { Seitert framing })=p q
$$

so if $L \in \mathcal{L}\left(T_{\text {prs }}\right)$ then $t b(L)=\operatorname{tw}(L, T)+p q$
hint: recall construction of Seifent surface using copies of disks

away from intersection points framings same at each intersection point pick up ± 1

now the Bennequin inequality says for $L \in \mathcal{L}\left(T_{p, q}\right)$

$$
t b(L) \leq p q-p-q
$$

So $\quad \operatorname{tr}(L, T) \leqslant-p-q<0$
\therefore can make T convex without moving L
to prove 1) we assume th (L) $<$ pq-p-q and put L on a convex torus T
exercise: if γ has slope $s \in(-\infty, 0)$
then r. Tor $\geq p+q$
with equality $\Leftrightarrow s=-1$
note there is a torus T^{\prime} that is disjoint from, but is otopic to T suck that T convex

$$
\begin{aligned}
& \left|\Gamma_{T^{\prime}}\right|=2 \\
& \operatorname{slope}\left(\Gamma_{T^{\prime}}\right)=-1
\end{aligned}
$$

assume ruling slope of τ^{\prime} is $9 / p$
let A be an annulus with one boundary a ruling curve on T^{\prime} and the other L we can make A convex (Why?)
note:

$$
\begin{aligned}
& \Gamma_{A} \cap L=2|\tan (L, T)|>2(p+q) \\
& \Gamma_{A} \cap(\text { ruling curve) }=2(p+q)
\end{aligned}
$$

so as we hove done before Γ_{A} has a "boundary parallel" arc (parallel to L)
so we get a bypass

we can use this to directly destabilize L but arguing as in end of Section A, we can consider a standard ubhd N of L and argument above gives a bypass for ∂N along a ruling ave of slope O (using T framing)
so L destabilizes
to prove 2) we note if $L, L^{\prime} \in \mathcal{L}\left(\tau_{p .9}\right)$ both have $H_{5}=\rho q-p-q$ then L, C^{\prime} can be put on a convex torus T, τ^{\prime} each with 2 dividing cares of slope -1
we can also assume L, L are ruling curves in T_{3}, T_{7}^{\prime} now T, T ' bound solid for S, S^{\prime}
S. S' are std ubhds of Legendrion unknots
$\tilde{L}, \tilde{L}^{\prime}$ with $t=1$
so $\tau_{h}{ }^{m} 3$ says $\tilde{L}, \tilde{L}^{\prime}$ are $L e g$. isotopic and discussion in Section A says s is contact isotopic to s^{\prime}
$\therefore L, C^{\prime}$ are ruling curves on same torus
\therefore is topic through ruling curves
Proof of Th ${ }^{-2} 5$:
we start with
Fact: $L \in \mathcal{L}\left(\tau_{\text {aq }}\right) \Rightarrow+b(c) \leq p q$

$$
\text { (so } \operatorname{arc}(c, \pi) \leq 0)
$$

\therefore if $L \in \mathscr{L}(T, q)$ then can put L on a convex torus T
if $+b(c)<p q$, then $s l o p e\left(r_{T}\right)=s \neq 9 / p$ (or $s=\% / p$ and \angle not a ruling carve)
$\therefore \exists$ a convex tors τ^{\prime} disjoint from T, isotopic to T, and with slope $\left(\Gamma_{\tau^{\prime}}\right)=q / p$ and $\left|\Gamma_{\tau^{\prime}}\right|=2$
(Since T splits s^{3} into $S_{\infty} \cup S^{\circ}$ and

$$
\begin{aligned}
& \left.s_{s t a}\right|_{s_{\infty}} \in T_{i g h t}\left(s_{\infty} ; q / p\right) \\
& \left.s_{s+t}\right|_{s^{0}} \in T_{\text {cig ht }}\left(s^{0} ; q_{p}\right)
\end{aligned}
$$

fist can realize all slopes is $(-\infty, 3]$
second " " $[s, 0)$
and q / p e ore of these intervals)
let A be an annulus with one boundary component L and other a dividing curve on τ^{\prime}
so as above we con find a bypass for L and hence can destabilize L

$$
\therefore+b(L)<p q \Rightarrow L \text { destabilizes }
$$

now if $L \in \mathscr{L}\left(\tau_{p, q}\right)$ and $t_{b}(L)=p q$ then as above we can put L on a convex torus with dividing slope $\%$, as a legendrion divide
recall we are assuming $-k-1<9 / p<-k$
so there are tori $T^{\prime}, T "$ such that
T^{\prime} is a convert fords with 2 dividing curves of slope -k, bounding a solid torus $S^{\prime}=s_{\infty}$ containing T
T 'is a convex torus with 2 divicining curves of slope $-k-1$, bounding a sold torus $S^{\prime \prime}=S_{\infty}$ that is contained in a solid torus $S=S_{\infty}$ that T bounds

note: S^{\prime} is a standard neighborhood of a Legendrim unknot L ' with th $=-k$ there are k possibilities depending on rotation
number
eg. $k=4$

and $S^{\prime \prime}$ is a standard ibid of a Legendrian unknot $L^{\prime \prime}$ that is a stabilizatzois of L^{\prime}
there are 2 chocies for $L^{\prime \prime}: S_{ \pm}\left(L^{\prime}\right)$
Claim: L determined by L 'and $L "$
(ie. if L, L^{2} has L^{\prime} wotopic to L^{\prime}
and $L^{\prime \prime}$ isotopic to $L^{\prime \prime}$
then L is otopic to τ)
given this there are at most $2 k \quad L \in \mathcal{L}\left(\tau_{1, q}\right)$ with $t_{0}=p q$
from exercise (front diagrams) after statement of $\overline{4}$ M 5 we know there are at least $2 k$ as well and they have claimed rotation numbers
Proof of Claim:
Suppose $\left|\Gamma_{T}\right|=2$
let $C^{\prime}=\overline{S^{3}-S^{\prime}}$

$$
\begin{aligned}
& R=S^{\prime}-S^{\prime \prime} \\
& R \backslash T=R_{0} \cup R_{1}
\end{aligned}
$$

note: $S^{3}=S^{\prime \prime} \cup R_{0} \cup R_{1} \cup C^{\prime}$

$$
\exists I_{R} \in T_{1 g} \operatorname{lt}_{\text {min }}\left(\tau^{2} \times\{0,1] ;-k-1,-k\right)
$$

basic slice, so 2 possibilities determined by \pm in $L^{\prime \prime}=S_{ \pm}\left(L^{\prime}\right)$

$$
\} l_{c^{\prime}} \in \operatorname{Teg} \operatorname{lot}\left(s^{0} ;-k\right)
$$

k possibilities detained by C^{\prime}

finally $T_{R_{0}}, T I_{R_{1}}$ determined bey splitting $T R_{R}$ along T
determured by $?_{R}$

$$
\therefore b_{y} \pm n^{c} S_{ \pm}\left(c^{\prime}\right)=c^{\prime \prime}
$$

$\therefore \exists$ contactomorphism $\left(S^{3}, s_{s+d}\right)$ taking

$$
\begin{aligned}
& S^{\prime \prime} \rightarrow \widetilde{S^{\prime \prime}} \\
& R_{0} \rightarrow \widetilde{R_{0}} \\
& R_{1} \rightarrow \widetilde{R_{1}}
\end{aligned}
$$

$$
c^{\prime} \longrightarrow \tilde{c}^{\prime}
$$

$\therefore T$ fo $\tilde{\gamma}$
L is ley divide on T and τ - -
If f sends L to \tilde{L} then we are done otherwise f sents L to the other Legendrion divicle on \widetilde{T} and we are done by
exercise:
the two Legendrion divictes on \widetilde{T} in \tilde{R} are Legendrion isotopic
hint: in \widetilde{R} there is a torus \hat{T} with $\frac{1}{r_{3}}$ a linear foliation of slope $9 / p$ \tilde{T} is a perturbation of \hat{T} and $L e$ g. divides of \tilde{T} are $\tilde{T} \cap \hat{T}$

to finish the claim we need
exercise:
suppose T has $2 n$ dividing carves is R there are tori T_{1}, T_{2} such that T_{1} are convex with ow dividing carves of slope q / p
and T_{0}, T_{1} cobound a $\left.T^{2} \times \varepsilon_{0}, 1\right]$ contacing T the contact structure is unique on $T^{2} \times[0,1]$ in exercise) and the Legendrian diuctes on T are Logendrion isotopic to divides on T_{i} so we can assume L is on a convex torus with 2 dividing curves
hint:

lastly we need to see if $L, L^{\prime} \in \mathcal{L}\left(\tau_{p . q}\right)$ with $Y b(L)=t b\left(L^{\prime}\right)=p q$ and $r(c)$ is adjacent to $r(c)$ in set of rotation numbers for th $=p q$ elis of $\mathcal{L}\left(T_{p, q}\right)$ then as soon as they are stabilized so that rotation numbers are same, then they are Leg. isotopic recall, if $-q=\left(n_{1}+n_{2}+1\right) p+e$,
then the front diagrams for knots in $\mathcal{L}\left(\tau_{R q}\right)$ with th $=p q$ are

$A=\underbrace{=F=}_{e} \Rightarrow$ or $=\underbrace{E-\ldots Z=}_{e}$
exercise: show if L and C 'have "adjacent" rotation numbers then either

1) n_{i} for L and L 'same but A^{\prime} s are different or
2) A's are same and n_{1} 's differ by one now show when L, L 'differ in this way they are isotopic often stabilizing rig let number of times
$2^{\text {nd }}$ way to see this
exenccsé: suppose L, \tilde{L} have associated solid tori $S^{\prime}, s^{\prime \prime}, \tilde{s}^{\prime}, s^{\prime \prime \prime}$ as above, with $S^{\prime} \tilde{S}^{\prime}$ able of $L^{\prime}, \tilde{L}^{\prime}$ and $S^{\prime \prime} S^{\prime \prime \prime}$ nbhds of $L^{\prime \prime}, \tilde{L}^{\prime \prime}$
if $L^{\prime}=\tilde{L}^{\prime}$ then show first common stabilization of $L_{1} \tilde{L}$ is the ruling curve on $\partial s^{\prime}=2 s^{\prime \prime}$ if $L^{\prime} \neq \tilde{L}^{\prime}$ but $L^{\prime \prime}=\tau^{\prime \prime}$, then show the first common stabilization of L, \mathcal{Z} is the ruling curve on $\partial S^{\prime \prime}=\partial \tilde{S}^{\prime \prime}$

Proof of Fact: $p q<0, L \in \mathscr{L}\left(T_{\text {aq }}\right) \Rightarrow \mu s(c) \leq p q$
suppose $\exists L \in \mathcal{L}\left(\tau_{p, q}\right)$ with $t b(c)>p q$
by stabilizing can assume $+b(c)=p q+1$
now let X be Wevistein 4 -mfol obtained b/ attaching 2 -handle to B^{4} along L
$\partial X=p q-$ Delin surgery on L
recall framing of L from τ is ρq
so when we do Dehn surgery we remove a ubhd N of L from S^{3}

$$
T \cap\left(\overline{S^{3}-N}\right)=\operatorname{annulus} A
$$

when we glue us $S^{\prime} \times D^{2}$ two dish glue to $2 A$ to gie a sphere

$$
\therefore \partial x=M_{1} \# M_{2}
$$

exercise: show $M_{1}=L(p, q)$ and $M_{2}=-L(q, p)$
Eliashberg shows if ∂X a connected sum then $X=X_{1} \cup X_{2} \cup 1$-handle

$$
\therefore \partial x_{2}=\mu_{1}
$$

Mayer-Viétorss $\Rightarrow X_{1}$ or X_{2} is integral homology bull

Long exact sequence of a pair $\Rightarrow M_{1}$ or M_{2} an integral homology sphere \&

